Abstract
BackgroundBefore considering whether to use a multivariable (diagnostic or prognostic) prediction model, it is essential that its performance be evaluated in data that were not used to develop the model (referred to as external validation). We critically appraised the methodological conduct and reporting of external validation studies of multivariable prediction models.MethodsWe conducted a systematic review of articles describing some form of external validation of one or more multivariable prediction models indexed in PubMed core clinical journals published in 2010. Study data were extracted in duplicate on design, sample size, handling of missing data, reference to the original study developing the prediction models and predictive performance measures.Results11,826 articles were identified and 78 were included for full review, which described the evaluation of 120 prediction models. in participant data that were not used to develop the model. Thirty-three articles described both the development of a prediction model and an evaluation of its performance on a separate dataset, and 45 articles described only the evaluation of an existing published prediction model on another dataset. Fifty-seven percent of the prediction models were presented and evaluated as simplified scoring systems. Sixteen percent of articles failed to report the number of outcome events in the validation datasets. Fifty-four percent of studies made no explicit mention of missing data. Sixty-seven percent did not report evaluating model calibration whilst most studies evaluated model discrimination. It was often unclear whether the reported performance measures were for the full regression model or for the simplified models.ConclusionsThe vast majority of studies describing some form of external validation of a multivariable prediction model were poorly reported with key details frequently not presented. The validation studies were characterised by poor design, inappropriate handling and acknowledgement of missing data and one of the most key performance measures of prediction models i.e. calibration often omitted from the publication. It may therefore not be surprising that an overwhelming majority of developed prediction models are not used in practice, when there is a dearth of well-conducted and clearly reported (external validation) studies describing their performance on independent participant data.
Highlights
Before considering whether to use a multivariable prediction model, it is essential that its performance be evaluated in data that were not used to develop the model
Inclusion criteria We focused our review on studies that described some form of evaluation of a multivariable prediction model, diagnostic or prognostic, and in data that were not used to develop the model
Twenty-three articles (23/78; 29%; 95% CI 20% to 41%) presented Receiver Operating Characteristic (ROC) curves, yet only four articles labelled the curve at specific points enabling sensitivity and specificity to be read off at these points
Summary
Before considering whether to use a multivariable (diagnostic or prognostic) prediction model, it is essential that its performance be evaluated in data that were not used to develop the model (referred to as external validation). Driving the growing number of published prediction models is the mounting awareness of the need to have accurate and objective approaches to combine multiple pieces of information (e.g. patient and disease characteristics, symptoms, test results, etc.) for an individual to derive a single estimate of risk. This is illustrated by their increasing inclusion in clinical guidelines and recommendation by national bodies [4,5,6]. This clearly points to considerable waste in research (including monetary and scientific) [10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.