Abstract
Simple SummaryThe aim of this study was to perform an external validation in a U.S. screening cohort of a mammography-derived AI risk model that was originally developed in a European study setting. The AI risk model was designed to predict short-term breast cancer risk toward identifying women who could benefit from supplemental screening and/or a shorter screening interval due to their high risk of breast cancer. The AI risk model showed a discriminatory performance of AUC 0.68, comparable to previously reported European validation results (AUC = 0.73). The discriminatory performance of the AI risk model was non-significantly different by race (AUC for White women = 0.67 and for Black women = 0.70), p = 0.20. In relation to a clinically used lifestyle–family-based risk model, the AI risk model showed a significantly higher discriminatory performance (AUCs 0.68 vs. 0.55, p < 0.01).Despite the demonstrated potential of artificial intelligence (AI) in breast cancer risk assessment for personalizing screening recommendations, further validation is required regarding AI model bias and generalizability. We performed external validation on a U.S. screening cohort of a mammography-derived AI breast cancer risk model originally developed for European screening cohorts. We retrospectively identified 176 breast cancers with exams 3 months to 2 years prior to cancer diagnosis and a random sample of 4963 controls from women with at least one-year negative follow-up. A risk score for each woman was calculated via the AI risk model. Age-adjusted areas under the ROC curves (AUCs) were estimated for the entire cohort and separately for White and Black women. The Gail 5-year risk model was also evaluated for comparison. The overall AUC was 0.68 (95% CIs 0.64–0.72) for all women, 0.67 (0.61–0.72) for White women, and 0.70 (0.65–0.76) for Black women. The AI risk model significantly outperformed the Gail risk model for all women p < 0.01 and for Black women p < 0.01, but not for White women p = 0.38. The performance of the mammography-derived AI risk model was comparable to previously reported European validation results; non-significantly different when comparing White and Black women; and overall, significantly higher than that of the Gail model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.