Abstract
As an increasing number of studies use gold nanoparticles (AuNPs) for potential medicinal, biosensing and therapeutic applications, the synthesis and use of readily functional, bio-compatible nanoparticles is receiving much interest. For these efforts, the particles are often taken up by the cells to allow for optimum sensing or therapeutic measures. This process typically requires incubation of the particles with the cells for an extended period. In an attempt to shorten and control this incubation, we investigated whether nanosecond pulsed electric field (nsPEF) exposure of cells will cause a controlled uptake of the particles. NsPEF are known to induce the formation of nanopores in the plasma membrane, so we hypothesized that by controlling the number, amplitude or duration of the nsPEF exposure, we could control the size of the nanopores, and thus control the particle uptake. Chinese hamster ovary (CHO-K1) cells were incubated sub-10 nm AuNPs with and without exposure to 600-ns electrical pulses. Contrary to our hypothesis, the nsPEF exposure was found to actually decrease the particle uptake in the exposed cells. This result suggests that the nsPEF exposure may be affecting the endocytotic pathway and processes due to membrane disruption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.