Abstract
An external quality assessment (EQA) program for the molecular detection of avian influenza A (H7N9) virus was implemented by the National Center for Clinical Laboratories (NCCL) of China in June 2013. Virus-like particles (VLPs) that contained full-length RNA sequences of the hemagglutinin (HA), neuraminidase (NA), matrix protein (MP), and nucleoprotein (NP) genes from the H7N9 virus (armored RNAs) were constructed. The EQA panel, comprising 6 samples with different concentrations of armored RNAs positive for H7N9 viruses and four H7N9-negative samples (including one sample positive for only the MP gene of the H7N9 virus), was distributed to 79 laboratories in China that carry out the molecular detection of H7N9 viruses. The overall performances of the data sets were classified according to the results for the H7 and N9 genes. Consequently, we received 80 data sets (one participating group provided two sets of results) which were generated using commercial (n = 60) or in-house (n = 17) reverse transcription-quantitative PCR (qRT-PCR) kits and a commercial assay that employed isothermal amplification method (n = 3). The results revealed that the majority (82.5%) of the data sets correctly identified the H7N9 virus, while 17.5% of the data sets needed improvements in their diagnostic capabilities. These "improvable" data sets were derived mostly from false-negative results for the N9 gene at relatively low concentrations. The false-negative rate was 5.6%, and the false-positive rate was 0.6%. In addition, we observed varied diagnostic capabilities between the different commercially available kits and the in-house-developed assays, with the assay manufactured by BioPerfectus Technologies (Jiangsu, China) performing better than the others. Overall, the majority of laboratories have reliable diagnostic capacities for the detection of H7N9 virus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.