Abstract

Achieving salt-tolerance is highly desirable in today's agricultural context. Apart from developing salt-tolerant cultivars, possibility lies with management options, which can improve crop yield and have significant impact on crop physiology as well. Thus present study was aimed to evaluate the ameliorative role of potassium (K+) in salinity tolerance of peanut. A field experiment was conducted using two differentially salt-responsive cultivars and three levels of salinity treatment (control, 2.0 dS m−1, 4.0 dS m−1) along with two levels (with and without) of potassium fertilizer (0 and 30 kg K2O ha−1). Salinity treatment incurred significant changes in overall physiology in two peanut cultivars, though the responses varied between the tolerant and the susceptible one. External K+ application resulted in improved salinity tolerance in terms of plant water status, biomass produced under stress, osmotic adjustment and better ionic balance. Tolerant cv. GG 2 showed better salt tolerance by excluding Na+ from uptake and lesser accumulation in leaf tissue and relied more on organic osmolyte for osmotic adjustment. On the contrary, susceptible cv. TG 37A allowed more Na+ to accumulate in the leaf tissue and relied more on inorganic solute for osmotic adjustment under saline condition, hence showed more susceptibility to salinity stress. Application of K+ resulted in nullifying the negative effect of salinity stress with slightly better response in the susceptible cultivar (TG 37A). The present study identified Na+-exclusion as a key strategy for salt-tolerance in tolerant cv. GG 2 and also showed the ameliorating role of K+ in salt-tolerance with varying degree of response amongst tolerant and susceptible cultivars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.