Abstract

<p style='text-indent:20px;'>We deal with the reachability problem for linear and bilinear discrete-time uncertain systems under integral non-quadratic constraints on additive input terms and set-valued constraints on initial states. The bilinearity is caused by an interval type uncertainty in coefficients of the system. Algorithms for constructing external parallelepiped-valued (shorter, polyhedral) estimates of reachable sets are presented. For linear time-invariant systems, two techniques for constructing touching external estimates with constant orientation matrices are described and compared. For time-dependant bilinear systems, parallelepiped-valued estimates are constructed. For bilinear systems with constant coefficients, nonconvex estimates are proposed in the form of unions of parallelepipeds. Evolution of all estimates is determined by systems of recurrence relations.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.