Abstract

The evaluation of external nozzle loading on filament wound Fiber Reinforced Plastic (FRP) storage tanks and pressure vessels can be a challenging task. While established methods for metallic vessels exist, limited guidance is available to account for the unique characteristics of FRP composite materials and standard FRP fabrication practices. Anisotropic material properties can have a significant effect on the stress/strain distribution due to external nozzle loading. Typical FRP nozzle installation practices introduce additional concerns, including the potential for peeling or overstraining the nozzle attachment overlays. In this paper, the effects of various orthotropic material properties of cylindrical vessels with external nozzle loading are explored using finite element analysis and compared with existing methods established for isotropic materials. Modifications to account for the effects of filament wound FRP material properties are proposed. A simplified FRP nozzle load evaluation procedure, along with additional commentary, is presented to address some of the special considerations regarding nozzle load evaluation for FRP storage tanks and pressure vessels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call