Abstract
An external laser intensity modulation system based on a micro-electromechanical systems (MEMS) mirror is presented in this paper, for application to gas sensing. The micro mirror is driven by the electrothermal actuator. The rotation direction is decided by the relative position between the driving actuator and the axis of micro-mirror. In contrast to the traditional technique of current modulation of tunable diode lasers where wavelength modulation (WM) is combined with intensity modulation (IM), the IM can be separated from WM and wavelength tuning through the external modulation furnished by the mirror reflection. The MEMS mirror with 10μm thick structure material layer and 100nm thick gold coating is formed as a circular mirror with 2mm diameter. The mirror is attached to an electrothermal actuator and is fabricated on a chip that is wire-bonded and placed on a PCB holder. There are four electrothermal actuators orthogonal to each other that are connected to the circular mirror. Double-loop serpentine springs are used to attach the four actuators to the micro mirror. Each three-beam actuator is attached to a spring at one end that connects the actuator to the mirror and fixed to the substrate at the other end. The actuators are of two different types regarding length: 1.8 mm from hereon called the long actuator and 1.35 mm called the short actuator. Characterizing the frequency response and measuring the modulation performance of the MEMS mirror is presented in this work. Intensity modulation depth from very low values to about 100 percent can be achieved through adjusting the MEMS mirror's reflection position and driving voltage. The intensity-modulated laser source is used for photoacoustic gas sensing in order to recover the target gas absorption line profile based on tunable diode laser spectroscopy. The target gas is 1 percent acetylene balanced by nitrogen and the target absorption line is P17 of acetylene at 1535.39nm. Good agreement between experimental results and theoretical simulations is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.