Abstract

Hair metal(loid)s are often measured as biomarkers to evaluate population internal exposure, however, hair samples could be easily contaminated by ambient particulate matter (PM) pollution. Here, we evaluated the potential external interference from ambient PM pollution on using hair metal(loid)s for population biomarker-based exposure assessment. The raw hair samples were strictly washed and placed under various indoor and outdoor scenarios for ~6 months at sites with high PM pollution. The contaminated hair was then washed using the same method. A total of 33 hair elements were quantified by inductively coupled plasma–mass spectrometry. The surface residual PM on hair after washing was observed by scanning electron microscopy. In addition, we chose a practical exposure scenario including 77 housewives in Shanxi Province, China for validation. The results for the hair exposure experiment revealed that external contamination of some elements that had relatively high concentrations in hair was generally mild in both indoor and outdoor exposure scenarios (i.e., Zn, Mg, Se, Fe, Sr, Ti, Mn, Sn, Ge, U, Co, Mo, and As). A relatively higher external contamination of other elements (e.g., Al, Cr, Pb, Cd, Li, and most rare earth elements (REEs)) was observed, especially for those elements with relatively low hair concentrations (e.g., Cd, and REEs) in the outdoor environment. This finding was due mainly to some small ambient PM not being fully removed by the current washing strategy when the hair sample was heavily contaminated. However, results from practical exposure scenario of the housewives showed that there were overall no significant differences of hair metal(loid)s between the housewives using coal and clean energy for cooking. We concluded that the external interference on hair internal metal(loid) analysis could be negligible when hair was efficiently washed, especially for population with relatively longer indoor activities. It is therefore promising to use hair analysis for their population exposure assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.