Abstract
Ruppia cirrhosa, a temperate seagrass growing in brackish water, featured a high capacity for HCO(3) (-) utilisation, which could operate over a wide pH range (from 7.5 up to 9.5) with maintained efficiency. Tris buffer inhibited this means of HCO(3) (-) utilisation in a competitive manner, while addition of acetazolamide, an inhibitor of extracellular carbonic anhydrase activity, caused a 40-50% inhibition. A mechanism involving periplasmic carbonic anhydrase-catalysed HCO(3) (-) dehydration in acid zones, followed by a (probably diffusive) transport of the formed CO(2) across the plasma membrane was thus, at least partly, responsible for the HCO(3) (-) utilisation. This mechanism, which comprises a CO(2)-concentrating mechanism (CCM) associated with the plasma membrane, is thus shown for the first time in an aquatic angiosperm. Additional mechanisms involved in the Tris-sensitive HCO(3) (-) utilisation could be direct HCO(3) (-) uptake (e.g., in an H(+)/HCO(3) (-)symport) or (more likely) non-catalysed HCO(3) (-) dehydration in the acid zones. Based on these results, and on earlier investigations on Zostera marina, a general model for analysis of HCO(3) (-) utilisation mechanisms of seagrasses is suggested. In this model, three 'systems' for HCO(3) (-) utilisation are defined which are characterised (and can to some extent be quantified) by their capability to operate at high pH in combination with their response to acetazolamide and Tris. Some consequences of the fact that HCO(3) (-) utilisation and osmoregulation probably depend on the same energy source (ATP via H(+)-ATPase in the plasma membrane) are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.