Abstract

In this study, incorporation of one deuterium atom was achieved by H-D exchange of one of the two identical methylene protons in various dihalomethanes (halogen = Cl, Br, and I) through a rapid-mixing microflow reaction of lithium diisopropylamide as a strong base and deuterated methanol as a deuteration reagent. Generation of highly unstable carbenoid intermediate and suppression of its decomposition were successfully controlled under high flow-rate conditions. Monofunctionalization of diiodomethane afforded various building blocks composed of boryl, stannyl, and silyl groups. The monodeuterated diiodomethane, which served as a deuterated C1 source, was subsequently subjected to diverted functionalization methods to afford various products including biologically important molecules bearing isotope labelling at specific positions and homologation products with monodeuteration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.