Abstract

Despite the increasing effort in advancing oxygen electrocatalysts for zinc-air batteries (ZABs), the performance development gradually reaches a plateau via only ameliorating the electrocatalyst materials. Herein, a new class of external field-responsive electrocatalyst comprising Ni0.5Mn0.5Fe2O4 stably dispersed on N-doped Ketjenblack (Ni0.5Mn0.5Fe2O4/N-KB) is developed via polymer-assisted strategy for practical ZABs. Briefly, the activity indicator ΔE is significantly decreased to 0.618V upon photothermal assistance, far exceeding most reported electrocatalysts (generally >0.680V). As a result, the photothermal electrocatalyst possesses comprehensive merits of excellent power density (319mW cm-2), ultralong lifespan (5163 cycles at 25mA cm-2), and outstanding rate performance (100mA cm-2) for liquid ZABs, and superb temperature and deformation adaptability for flexible ZABs. Such improvement is attributed to the photothermal-heating-enabled synergy of promoted electrical conductivity, reactant-molecule motion, active area, and surface reconstruction, as revealed by operando Raman and simulation. The findings open vast possibilities toward more-energy-efficient energy applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.