Abstract
We investigate the dynamics of a charged particle confined to move on a toroidal helix while being driven by an external time-dependent electric field. The underlying phase space is analyzed for linearly and circularly polarized fields. For small driving amplitudes and a linearly polarized field, we find a split up of the chaotic part of the phase space, which prevents the particle from inverting its direction of motion. This allows for a nonzero average velocity of chaotic trajectories without breaking the well-known symmetries commonly responsible for directed transport. Within our chosen normalized units, the resulting average transport velocity is constant and does not change significantly with the driving amplitude. A very similar effect is found in case of the circularly polarized field and low driving amplitudes. Furthermore, when driving with a circularly polarized field, we unravel a second mechanism of the split up of the chaotic phase space region for very large driving amplitudes. There exists a wide range of parameter values for which trajectories may travel between the two chaotic regions by crossing a permeable cantorus. The limitations of these phenomena, as well as their implication on manipulating directed transport in helical geometries are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.