Abstract
Dose conversion coefficients for teeth of children were computed for external photon sources by means of Monte Carlo methods using a modified MIRD-type mathematical phantom of a 5-year-old child. The tooth region is separated into eight smaller regions that represent incisors, canines, first and second molars. Each of these sub-regions is separated into enamel and dentin parts. Dose conversion coefficients were computed as ratio of absorbed dose in the enamel and air kerma. They are given for unidirectional (AP, PA, RLAT, LLAT), rotational (ROT) and isotropic (ISO) photon sources in the energy range from 10 keV to 10 MeV. All computations were performed with the MCNP4 code including coupled electron-photon transport. The computed coefficients demonstrate a significant non-linearity versus photon energy, which is more pronounced than that observed for adult phantoms. Due to this non-linearity, use of the EPR-measured doses in human teeth requires information on the incident photon fluence spectra. The data presented can be used for assessment of public exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.