Abstract
Electric field, hydrostatic pressure and conduction band non-parabolicity effects on the binding energies of the lower-lying states and the diamagnetic susceptibility of an on-center hydrogenic impurity confined in a typical GaAs / Al x Ga 1 − x As spherical quantum dot is theoretically investigated, by direct diagonalization of the Hamiltonian. To this end, the effect of band non-parabolicity has been performed, by means of the Luttinger–Kohn effective mass equation. Binding energies and diamagnetic susceptibility of the hydrogenic impurity are computed as a function of the dot size, external electric field strength and hydrostatic pressure, with considering the edge-band non-parabolicity. Results show that the external electric field and the hydrostatic pressure have an obvious influence on the binding energies and the diamagnetic susceptibility of the impurity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.