Abstract

Airborne pollutants from fossil fuel burning in electricity generation potentially contribute a number of consequent environmental impacts. In order to indicate the actual costs of energy, a so-called external cost has become of growing concerns internationally. This study aims to evaluate the external costs related to human health degradation resulting from Thai electricity generation produced from fossil fuel which operated during the period from 2006 to 2008. Impact Pathway Approach (IPA) was applied in the analysis. The advections of the criteria pollutants (SO 2, NO X, and PM 10) including secondary particulates (sulfate and nitrate aerosols) had been simulated using the CALMET/CALPUFF modeling system. Subsequently, the exposure-response functions (ERFs) were used to quantify the marginal damage to public health. Finally, costs of such damages were then estimated based on welfare economics. The results showed that the criteria pollutants caused significant damage to both premature mortality and morbidity. The average damage cost was totally about 600 million 2005 US$ annually which ranged between 0.05 and 4.17 US$ cent kWh −1 depending on fuel types. It implies that the external costs are significant to the determination of electricity market price. With the damage costs being included, the electricity price will reflect the true costs of the generation which will be beneficial to the society as a whole.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call