Abstract

Scleractinian corals have complicated inorganic carbon (C i) transport pathways to support both photosynthesis, by their symbiotic dinoflagellates, and calcification. The first step in C i acquisition, uptake into the coral, is critical as the diffusive boundary layer limits the supply of CO2 to the surface and HCO3 − uptake is energy intensive. An external carbonic anhydrase (eCA) on the oral surface of corals is thought to facilitate CO2 uptake by converting HCO3 − into CO2, helping to overcome the limitation imposed by the boundary layer. However, this enzyme has not yet been identified or detected in corals, nor has its activity been quantified. We have developed a method to quantify eCA activity using a reaction–diffusion model to analyze data on 18O removal from labeled C i. Applying this technique to three species of Caribbean corals (Orbicella faveolata, Porites astreoides, and Siderastrea radians) showed that all species have eCA and that the potential rates of CO2 generation by eCA greatly exceed photosynthetic rates. This demonstrates that eCA activity is sufficient to support its hypothesized role in CO2 supply. Inhibition of eCA severely reduces net photosynthesis in all species (on average by 46 ± 27 %), implying that CO2 generated by eCA is a major carbon source for photosynthesis. Because of the high permeability of membranes to CO2, CO2 uptake is likely driven by a concentration gradient across the cytoplasmic membrane. The ubiquity of eCA in corals from diverse genera and environments suggests that it is fundamental for photosynthetic CO2 supply.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.