Abstract

In the present work, we investigate whether changes in excitation-contraction (EC) coupling mode occur in skeletal muscles from ageing mammals by examining the dependence of EC coupling on extracellular Ca(2+). Single intact muscle fibres from flexor digitorum brevis muscles from young (2-6 months) and old (23-30 months) mice were subjected to tetanic contractile protocols in the presence and absence of external Ca(2+). Contractile experiments in the absence of external Ca(2+) show that about half of muscle fibres from old mice are dependent upon external Ca(2+) for maintaining maximal tetanic force output, while young fibres are not. Decreased force in the absence of external Ca(2+) was not due to changes in charge movement as revealed by whole-cell patch-clamp experiments. Ca(2+) transients, measured by fluo-4 fluorescence, declined in voltage-clamped fibres from old mice in the absence of external Ca(2+). Similarly, Ca(2+) transients declined in parallel with tetanic contractile force in single intact fibres. Examination of inward Ca(2+) current and of mRNA and protein assays suggest that these changes in EC coupling mode are not due to shifts in dihydropyridine receptor (DHPR) and/or ryanodine receptor (RyR) isoforms. These results indicate that a change in EC coupling mode occurs in a population of fibres in ageing skeletal muscle, and is responsible for the age-related dependence on extracellular Ca(2+).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.