Abstract

Our hippocampal model depends on randomization. In principle, randomizations, e.g., chaotic activity fluctuations, quantal synaptic failures, or initial state randomization, can be overcome by strong external excitation. However, if external activity is too low, randomization will destroy the information transmitted by the inputs. Here, computer simulations of the transitive inference paradigm reveal an optimal range of external excitation. At lower activity levels, optimal performance occurs when the relative external excitation accounts for 35–40% of the total with activity, while at higher activity, external activity can be as low as 30% of the total.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.