Abstract

AbstractThis paper is concerned with the development of an exterior domain segmentation method for the solution of two‐ or three‐dimensional time‐harmonic scattering problems in acoustic media. This method, based on a variational localized, symmetric, boundary integral equation formulation leads, upon discretization, to a sparse system of algebraic equations whose solution requires only O(N) multiplications, where N is the number of unknown nodal pressures on the scatterer surface. The new procedure is analogous to the one developed recently1 except that in the present formulation we avoid completely the use of the hypersingular operator, thereby reducing the computational complexity. Numerical experiments for a rigid circular cylindrical scatterer subjected to a plane incident wave serve to assess its accuracy for normalized wave numbers, ka, ranging from 0 to 30, both directly on the scatterer and in the far field, and to confirm that, contrary to standard boundary integral equation formulations, the present procedure is valid for critical frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.