Abstract

Abstract Panelized wall system (PWS) is an effective offsite prefabrication approach that provides higher flexibility and customization power compared to modular construction. Product platform is an industrial engineering approach that can help in managing the panels' layout and component proliferation in the effort to comply with varying design requirements. Accordingly, this paper presents the development, implementation, and validation of a new exterior panelized walls platform optimization (EPWPO) model that optimizes the tradeoff between minimizing the total fabrication cost of the panels and minimizing the resulting design deviation from enforcing common platform designs for the panels. Two new metrics were developed to quantify the two conflicting objectives of panel platform design: total fabrication cost ( TFC ) and design deviation index (DDI). New computational algorithms were developed to automate the functions of panel elements geometry manipulation, structural analysis, and structural design in conjunction with the optimization process. The performance of the EPWPO model was illustrated using an application example of the fabrication of the exterior wall panels of a public school. Two analyses were performed to investigate the dependence of the model results on the platform configuration input and the degree of wall length tolerances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call