Abstract

The untranslated roX1 and roX2 RNAs are components of the Drosophila male-specific lethal (MSL) complex, which modifies histones to up-regulate transcription of the male X chromosome. roX genes are normally located on the X chromosome, and roX transgenes can misdirect the dosage compensation machinery to spread locally on other chromosomes. Here we define MSL protein abundance as a determinant of whether the MSL complex will spread in cis from an autosomal roX transgene. The number of expressed roX genes in a nucleus was inversely correlated with spreading from roX transgenes. We suggest a model in which MSL proteins assemble into active complexes by binding nascent roX transcripts. When MSL protein/roX RNA ratios are high, assembly will be efficient, and complexes may be completed while still tethered to the DNA template. We propose that this local production of MSL complexes determines the extent of spreading into flanking chromatin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call