Abstract

Extent and overlap of segregation distortion regions in 12 barley crosses determined via a Pool-GBS approach. Segregation distortion is undesirable as it alters the frequency of alleles and can reduce the chances of obtaining a particular combination of alleles. In this work, we have used a pooled genotyping-by-sequencing (Pool-GBS) approach to estimate allelic frequencies and used it to examine segregation distortion in 12 segregating populations of barley derived from androgenesis. Thanks to the extensive genome-wide SNP coverage achieved (between 674 and 1744 markers), we determined that the proportion of distorted markers averaged 28.9% while 25.3% of the genetic map fell within segregation distortion regions (SDRs). These SDRs were characterized and identified based on the position of the marker showing the largest distortion and the span of each SDR. Summed across all 12 crosses, 36 different SDR peaks could be distinguished from a total of 50 SDRs and a majority of these SDRs (27 of 36) were observed in only one population. While most shared SDRs were common to only two crosses, two SDRs (SDR3.1 and SDR4.2) were exceptionally recurrent (seen in five and four crosses, respectively). Because of the broad span of most SDRs, an average of 30% of crosses showed segregation distortion in any given chromosomal segment. In reciprocal crosses, although some SDRs were clearly shared, others were unique to a single direction. In summary, segregation distortion is highly variable in its extent and the number of loci underpinning these distortions seems to be quite large even in a narrow germplasm such as six-row spring barley.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call