Abstract
Background Many patellofemoral complications such as anterior knee pain, subluxation, fracture, wear, and aseptic loosening after total knee arthroplasty are attributed to malrotation of the femoral component. Rotating-platform mobile bearings can reduce malrotation between the tibial and femoral components and may also improve patellofemoral maltracking. Methods A computer model (LifeMOD/KneeSIM) of a weight-bearing deep knee bend was validated using cadaver knees tested in an Oxford-type knee rig. Changes in knee kinematics and patellofemoral forces were measured after femoral component malrotation of ± 3°. The effect of a rotating–bearing on these kinematics and forces was determined. Findings In a fixed-bearing arthroplasty femoral component internal malrotation increased tibiofemoral internal rotation by 3.4°, and external malrotation increased tibiofemoral external rotation by 4°. Femoral component malrotation affected patellofemoral lateral shift by up to 2.5 mm, and patellofemoral lateral shear by up to 19 N. When the malrotated femoral component was tested against a rotating–bearing the change in tibiofemoral rotation and patellofemoral lateral shift was less than 1° and 1 mm respectively. The rotating–bearing reduced peak lateral shear by 7 N and peak medial shear by 17 N. Increasing the conformity of the rotating–bearing reduced changes in tibiofemoral rotation due to femoral malrotation and increased the net rotation of the bearing (by approximately 5°) during flexion. Interpretation Our results are consistent with one randomized clinical outcome study and emphasize the value of computational modeling for preclinical design evaluation. It is important to continue to improve existing methodologies for accurate femoral component alignment especially in rotation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.