Abstract
Protoplasts were isolated from extensor and flexor regions of open pulvini of the nyctinastic tree Samanea saman. Both types of protoplasts undergo many changes during isolation. Extensor protoplasts are univacuolate in vivo, but some become multivacuolate. All flexor protoplasts are univacuolate. In an open pulvinus, extensor cells have a higher osmotic pressure than flexor cells. However, both types of protoplasts can be isolated with optimal yield using the same osmoticum (0.5 molar sorbitol) in the digestion medium. This suggests that some leakage of osmoticum occurs during harvest or digestion, especially from extensor tissue. Despite these changes, both types of protoplasts extrude protons in response to 10 micromolar fusicoccin (1.6-1.8 nanoequivalent/10(6) protoplasts/minute), demonstrating that the protoplasts are metabolically active and that proton transport mechanisms must be at least partially functional. The changes in vacuolar structure and osmotic pressure are what one might expect if the protoplasts, which are isolated from open pulvini, take on characteristics of cells in a closed pulvinus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.