Abstract

According to the van der Waals picture, attractive and repulsive forces play distinct roles in the structure of simple fluids. Here, we examine their roles in dynamics; specifically, in the degree of deterministic chaos using the Kolmogorov-Sinai (KS) entropy rate and the spectra of Lyapunov exponents. With computer simulations of three-dimensional Lennard-Jones and Weeks-Chandler-Andersen fluids, we find repulsive forces dictate these dynamical properties, with attractive forces reducing the KS entropy at a given thermodynamic state. Regardless of interparticle forces, the maximal Lyapunov exponent is intensive for systems ranging from 200 to 2000 particles. Our finite-size scaling analysis also shows that the KS entropy is both extensive (a linear function of system-size) and additive. Both temperature and density control the "dynamical chemical potential," the rate of linear growth of the KS entropy with system size. At fixed system-size, both the KS entropy and the largest exponent exhibit a maximum as a function of density. We attribute the maxima to the competition between two effects: as particles are forced to be in closer proximity, there is an enhancement from the sharp curvature of the repulsive potential and a suppression from the diminishing free volume and particle mobility. The extensivity and additivity of the KS entropy and the intensivity of the largest Lyapunov exponent, however, hold over a range of temperatures and densities across the liquid and liquid-vapor coexistence regimes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.