Abstract

Abstract The present work aims to present two different approaches to model the unsteady aerodynamics of horizontal-axis wind turbines (HAWTs). A complete and extensive comparison has been established between the results obtained using a low-fidelity calculation tool, as the Blade Element Momentum (BEM), and a high-fidelity technique, as the Computational Fluid Dynamics (CFD). Regarding the first calculation strategy, an accurate revision in polar diagrams calculation and the implementation of yaw and dynamic stall routines have endowed the BEM code to predict the machine performance under unsteady flow conditions. In order to achieve an accurate validation, the proposed BEM solver has been tested on AOC 15/50 and NREL Phase VI wind turbines. Referring to CFD techniques, a three-dimensional unsteady model has been improved to study the aerodynamic behaviour of the machine in case of yawed incoming wind.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.