Abstract

BackgroundThe aim of this study was to investigate the molecular characteristics of isoniazid resistant Mycobacterium tuberculosis (MTB), as well as its contribution to the dissemination of multi-drug resistant TB (MDR-TB) in rural areas of eastern China.MethodsA population-based epidemiological study was conducted in two rural counties of eastern China from 2004 to 2005. In total, 131 isoniazid resistant MTB isolates were molecularly characterized by DNA sequencing and genotyped by IS6110 restriction fragment length polymorphism (RFLP) and spoligotyping.ResultsThe katG315Thr mutation was observed in 74 of 131 isoniazid resistant isolates and more likely to be MDR-TB (48.6%) and have mutations in rpoB gene (47.3%). Spoligotyping identified 80.2% of isoniazid resistant MTB isolates as belonging to the Beijing family. Cluster analysis by genotyping based on IS6110 RFLP, showed that 48.1% isoniazid resistant isolates were grouped into 26 clusters and katG315Thr mutants had a significantly higher clustering proportion compared to those with katG wild type (73%.vs.18%; OR, 12.70; 95%CI, 6.357-14.80). Thirty-one of the 53 MDR-TB isolates were observed in 19 clusters. Of these clusters, isoniazid resistance in MDR-TB isolates was all due to the katG315Thr mutation; 18 clusters also contained mono-isoniazid resistant and other isoniazid resistant isolates.ConclusionsThese results highlighted that isoniazid resistant MTB especially with katG315Thr is likely to be clustered in a community, develop extra resistance to rifampicin and become MDR-TB in Chinese rural settings.

Highlights

  • The aim of this study was to investigate the molecular characteristics of isoniazid resistant Mycobacterium tuberculosis (MTB), as well as its contribution to the dissemination of multi-drug resistant TB (MDR-TB) in rural areas of eastern China

  • Isoniazid (INH) is one of the most effective and specific agents for the treatment of the disease caused by Mycobacterium tuberculosis (MTB)

  • It is a cornerstone of the modern short-course chemotherapy for tuberculosis, and widely used to treat the latent MTB infection (LTBI) to prevent the active disease and the subsequent TB transmission

Read more

Summary

Introduction

The aim of this study was to investigate the molecular characteristics of isoniazid resistant Mycobacterium tuberculosis (MTB), as well as its contribution to the dissemination of multi-drug resistant TB (MDR-TB) in rural areas of eastern China. Isoniazid (INH) is one of the most effective and specific agents for the treatment of the disease caused by Mycobacterium tuberculosis (MTB) It is a cornerstone of the modern short-course chemotherapy for tuberculosis, and widely used to treat the latent MTB infection (LTBI) to prevent the active disease and the subsequent TB transmission. Recent increases both in INH-resistant and multidrug-resistant (MDR) tuberculosis have been jeopardizing the efforts of global TB control through the implementation of the Directly Observed Treatment, Short course (DOTS) [1,2]. There has been considerable interest in both identifying the molecular basis of INH resistance and understanding the transmission pattern of the INH resistant MTB strain

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.