Abstract
Fabrication of a visible-light driven photocatalyst is of great vital for the elimination of antibiotics and microorganism in the wastewater and the construction of sustainable green energy systems. In this work, carbon quantum dots (C-dots) were integrated with Cu2O/SrTiO3 p-n heterojunction to optimize the photocatalytic activity. The excellent photocatalytic degradation efficiency of chlortetracycline hydrochloride (CTC·HCl) (92.6% within 90 min) and E. coli inactivation efficiency were observed over C-dots/Cu2O/SrTiO3 under visible light irradiation. It is the synergistic effect of p-n heterojunction and modification of C-dots that facilitates the separation and transfer of electron-holes. Meanwhile, the modification of C-dots improves the harvesting of long wavelength solar light of photocatalysts due to its unique up-conversion photoluminescence (UCPL) characteristics. Eventually, the possible photocatalytic degradation path of the catalyst was inferred by LC-MS spectra, and the degradation mechanism was analyzed. This study sheds light on new possibilities for the application of photocatalysts in various light sources and has broad application prospects in water treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.