Abstract
Scalability, cost, and feasibility of porous structures in gas capture are prerequisites for emerging materials to be promising in the industry. Herein, a simpler variant of Friedel−Crafts’ synthesis of highly porous covalent organic polymers (COPs) based on an unprecedented solvent‐mediated crosslinking is presented. Alkyl chlorides behave as both solvents and linkers in the presence of AlCl3. Studies on three classes of 18 different monomers using dichloromethane, chloroform, and 1,2‐dichloroethane lead to producing 29 new COPs (124−152). Polymers are characterized by Fourier‐transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, elemental composition analysis, scanning electron microscope (SEM), thermogravimetric analysis (TGA), and porosity analyzer. The synthesized COPs exhibit structures from nonporous to highly porous morphologies with Brunauer–Emmett–Teller (BET) surface areas as high as 1685 m2 g−1. These COPs show high gas uptake toward CO2 (up to 4.71 mmol g−1 at 273 K, 1.1 bar), CH4 (up to 1.31 mmol g−1 at 273 K, 1.1 bar), and H2 (up to 2.02 wt% at 77 K, 1.1 bar). The findings point to significant potential in producing sustainable porous materials through simple and scalable methodology developed here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.