Abstract
The Cambrian Explosion, which is characterized by complex organisms radiation after ~521 Ma, has led to speculation about low levels of ocean oxygenation during the Early Cambrian (~541–521 Ma). Recently, the genesis of sedimentary Mn-deposits has provided a new perspective for understanding the redox status of ancient oceans. The present study reevaluates the redox conditions of the Early Cambrian Ocean in South China using sedimentary records of Mn-deposits. The Mn-deposits developed in the Lower Cambrian Qiujiahe Formation on the northwestern Yangtze margin, covering slope/basin-to-shelf environments. The combined sedimentological, mineralogical, and geochemical evidence indicates that Mn-deposits lack of Mn-oxide precursors and exhibited hydrothermal-type REE patterns and δ13C distributions. Mn‑carbonates and partially alabandite (MnS) were directly precipitated in Mn-rich anoxic waters. The Mn-bearing rocks exhibited high total organic matter content (TOC, average 3.96 %), and pyrite layers developed, indicating active anaerobic sulfate reduction with the removal of Fe before Mn-deposition. The increased of the pH and sulfurization degree, promoting the Mn-minerals precipitation in water columns. The widespread Mn deposition across slope/basin-to-shelf areas represents the sedimentary response to the extensive ocean anoxia during the Early Cambrian. Such a scenario aids in elucidating the evolution of early life, suggesting that extensive ocean anoxia likely contributed to delaying the radiation of complex animals during the Cambrian Explosion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.