Abstract
Aqueous solutions of simple nickel(II) salts are a classical test case for theories of the paramagnetic relaxation enhancement (PRE) and its dependence on the magnetic field (nuclear magnetic relaxation dispersion, NMRD), going back to late fifties. We present here new experimental data, extending the NMRD range up to 21 T (900 MHz). In addition to salt solutions in (acidified) water, we have also measured on solutions containing glycerol. The aqueous solution data do not show any significant changes compared to the earlier experiments. The interpretation, based on the general (“slow-motion”) theory is also similar to the earlier work from our laboratory. The NMRD-data in mixed solvents are qualitatively different, indicating that the glycerol not only changes the solution viscosity, but may also enter the first coordination sphere of the metal ion, resulting in lower symmetry complexes, characterized by non-vanishing averaged zero-field splitting. This hypothesis is corroborated by molecular dynamics simulations. A strategy appropriate for interpreting the NMRD-data for the chemically complicated systems of this type is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.