Abstract

The genus Camellia underwent extensive natural transformation by Agrobacterium. Over a period of 15 million years, at least 12 different inserts accumulated in 72 investigated Camellia species. Like a wide variety of other wild and cultivated plants, Camellia species carry cellular T-DNA sequences (cT-DNAs) in their nuclear genomes, resulting from natural Agrobacterium-mediated transformation. Short and long DNA sequencing reads of 435 accessions belonging to 72 Camellia species (representing 12 out of 14 sections) were investigated for the occurrence of cT-DNA insertions. In all, 12 different cT-DNAs were recovered, either completely or partially, called CaTA to CaTL. Divergence analysis of internal cT-DNA repeats revealed that the insertion events span a period from 0.075 to 15 Mio years ago, and yielded an average transformation frequency of one event per 1.25 Mio years. The two oldest inserts, CaTA and CaTD, have been modified by spontaneous deletions and inversions, and by insertion of various plant sequences. In those cases where enough accessions were available (C. japonica, C. oleifera, C. chekiangoleosa, C. sasanqua and C. pitardii), the younger cT-DNA inserts showed a patchy distribution among different accessions of each species, indicating that they are not genetically fixed. It could be shown that Camellia breeding has led to intersectional transfer of cT-DNAs. Altogether, the cT-DNAs cover 374kb, and carry 47 open reading frames (ORFs). Two Camellia cT-DNA genes, CaTH-orf358 and CaTK-orf8, represent new types of T-DNA genes. With its large number of cT-DNA sequences, the genus Camellia constitutes an interesting model for the study of natural Agrobacterium transformants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call