Abstract

Great interest was aroused by reports, based on microsatellite markers, of high levels of statistically significant long-range and nonsyntenic linkage disequilibrium (LD) in livestock. Simulation studies showed that this could result from population family structure. In contrast, recent SNP-based studies of livestock populations report much lower levels of LD. In this study we show, on the basis of microsatellite data from four cattle populations, that high levels of long-range LD are indeed obtained when using the multi-allelic D' measure of LD. Long-range and nonsyntenic LD are exceedingly low, however, when evaluated by the standardized chi-square measure of LD, which stands in relation to the predictive ability of LD. Furthermore, specially constructed study populations provided no evidence for appreciable LD resulting from family structure at the grandparent level. We propose that the high statistical significance and family structure effects observed in the earlier studies are due to the use of large sample sizes, which accord high statistical significance to even slight deviations from asymptotic expectations under the null hypothesis. Nevertheless, even after taking sample size into account, our results indicate that microsatellites testify to the presence of usable LD at considerably wider separation distances than SNPs, suggesting that use of SNP haplotypes may considerably increase the usefulness of a given fixed SNP array.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.