Abstract
Circoviruses represent a group of small viruses with circular single-strand DNA genome that infect a wide range of both domesticated and wild animals. Domesticated geese infected with circovirus have been confirmed in many parts of the world, and is considered to cause immunosuppression and facilitate the secondary infections caused by other pathogens. In the present study, extensive genetically diversified goose circoviruses (GoCVs) were identified in the liver samples of domesticated geese from Guangdong province, southern China. Genetic analysis revealed that the sequences generated in this study shared 81.5 to 99.7% genome-wide pairwise identity with previously identified GoCV genomes. More importantly, nine recombination events were identified among all known complete genomome sequences of GoCV including those obtained herein, and the majority was determined associate with the sequences identified from Guangdong province, suggesting that recombination is the primary driver for the diversification of GoCVs. Additionally, purifying selection was the dominant evolutionary pressure acting on the genomes of GoCVs, and the ORF C1 gene of GoCV showed a higher genetic variation than ORF V1 gene. These results expand the knowledge about the genetic diversity and evolution of GoCV, and also indicate extensive genetically divergent GoCV strains were co-circulating in goose population in partial areas of Guangdong province, southern China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.