Abstract

The tammar wallaby (Notamacropus eugenii) is one of the most intensively studied of all macropodids and was the first Australasian marsupial to have its genome sequenced. However, comparatively little is known about genetic diversity and differentiation amongst the morphologically distinct allopatric populations of tammar wallabies found in Western (WA) and South Australia (SA). Here we compare autosomal and Y-linked microsatellite genotypes, as well as sequence data (~600 bp) from the mitochondrial DNA (mtDNA) control region (CR) in tammar wallabies from across its distribution. Levels of diversity at autosomal microsatellite loci were typically high in the WA mainland and Kangaroo Island (SA) populations (A = 8.9–10.6; He = 0.77–0.78) but significantly reduced in other endemic island populations (A = 3.8–4.1; He = 0.41–0.48). Autosomal and Y-linked microsatellite loci revealed a pattern of significant differentiation amongst populations, especially between SA and WA. The Kangaroo Island and introduced New Zealand population showed limited differentiation. Multiple divergent mtDNA CR haplotypes were identified within both SA and WA populations. The CR haplotypes of tammar wallabies from SA and WA show reciprocal monophyly and are highly divergent (14.5%), with levels of sequence divergence more typical of different species. Within WA tammar wallabies, island populations each have unique clusters of highly related CR haplotypes and each is most closely related to different WA mainland haplotypes. Y-linked microsatellite haplotypes show a similar pattern of divergence although levels of diversity are lower. In light of these differences, we suggest that two subspecies of tammar wallaby be recognized; Notamacropus eugenii eugenii in SA and N. eugenii derbianus in WA. The extensive neutral genetic diversity and inter-population differentiation identified within tammar wallabies should further increase the species value and usefulness as a model organism.

Highlights

  • The study of Australia’s unique marsupial fauna, continues to offer valuable insights into multiple fields including evolutionary genetics [1] and conservation biology [2]

  • Samples were obtained from 287 tammar wallabies from ten populations throughout the current range, including from Kangaroo Island, South Australia (SA) (n = 40) and Kawau Island, New Zealand (n = 30)

  • Most studies of tammar wallaby physiology, reproduction, genetics and development have utilised the Kangaroo Island population, and they are amongst the best known of marsupials [4,11]

Read more

Summary

Introduction

The study of Australia’s unique marsupial fauna, continues to offer valuable insights into multiple fields including evolutionary genetics [1] and conservation biology [2]. The tammar wallaby (Notamacropus eugenii) (see [3,4] regarding the change of genus from Macropus) is one of the most intensively studied marsupials, and has become a significant model species for reproductive, developmental, physiological, immunological, ecological and genetic research The tammar wallaby was the obvious candidate to be the first Australasian marsupial, and only the second marsupial species, to have its genome sequenced [1,13]. Despite this new found wealth of genomic knowledge, comparatively little is currently known about the distribution and abundance of genetic diversity within and amongst allopatric tammar wallaby populations. At the time of European settlement, the tammar wallaby was distributed on the South Australian (SA) mainland and in south-western Western Australia (WA), as well as on five SA and five WA continental islands (Fig 1) [15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call