Abstract

BackgroundThe chemokine family plays important roles in cell migration and activation. In humans, at least 44 members are known. Based on the arrangement of the four conserved cysteine residues, chemokines are now classified into four subfamilies, CXC, CC, XC and CX3C. Given that zebrafish is an important experimental model and teleost fishes constitute an evolutionarily diverse group that forms half the vertebrate species, it would be useful to compare the zebrafish chemokine system with those of mammals. Prior to this study, however, only incomplete lists of the zebrafish chemokine genes were reported.ResultsWe systematically searched chemokine genes in the zebrafish genome and EST databases, and identified more than 100 chemokine genes. These genes were CXC, CC and XC subfamily members, while no CX3C gene was identified. We also searched chemokine genes in pufferfish fugu and Tetraodon, and found only 18 chemokine genes in each species. The majority of the identified chemokine genes are unique to zebrafish or teleost fishes. However, several groups of chemokines are moderately similar to human chemokines, and some chemokines are orthologous to human homeostatic chemokines CXCL12 and CXCL14. Zebrafish also possesses a novel species-specific subfamily consisting of five members, which we term the CX subfamily. The CX chemokines lack one of the two N-terminus conserved cysteine residues but retain the third and the fourth ones. (Note that the XC subfamily only retains the second and fourth of the signature cysteines residues.) Phylogenetic analysis and genome organization of the chemokine genes showed that successive tandem duplication events generated the CX genes from the CC subfamily. Recombinant CXL-chr24a, one of the CX subfamily members on chromosome 24, showed marked chemotactic activity for carp leukocytes. The mRNA was expressed mainly during a certain period of the embryogenesis, suggesting its role in the zebrafish development.ConclusionThe phylogenic and genomic organization analyses suggest that a substantial number of chemokine genes in zebrafish were generated by zebrafish-specific tandem duplication events. During such duplications, a novel chemokine subfamily termed CX was generated in zebrafish. Only two human chemokines CXCL12 and CXCL14 have the orthologous chemokines in zebrafish. The diversification observed in the numbers and sequences of chemokines in the fish may reflect the adaptation of the individual species to their respective biological environment.

Highlights

  • The chemokine family plays important roles in cell migration and activation

  • Chemokine gene prediction and isolation of chemokine cDNAs Using various chemokine sequences as queries, we searched for chemokine genes in the zebrafish draft genome and expressed sequence tags (EST) databases and identified a total of 101 possible chemokine gene sequences (Table 1) in addition to the four chemokine genes reported previously by other groups, ccl1 (GenBank accession number NM_131062), cxcl12a and cxcl12b [15], and scyba [21]

  • Considering the zebrafish draft sequence covers approximately 85% of the genome, these results suggest that there would possibly exist more than the currently identified 111 (4+107) chemokine genes in the zebrafish genome, far exceeding the number of the mammalian chemokine genes

Read more

Summary

Introduction

The chemokine family plays important roles in cell migration and activation. Based on the arrangement of the four conserved cysteine residues, chemokines are classified into four subfamilies, CXC, CC, XC and CX3C. There are at least 44 chemokine genes (24 CC, 17 CXC, one CX3C, and two XC genes) in humans. There are four CC chemokine genes (CCL3L1, CCL3L3, CCL4L1, and CCL4L2), which are highly similar to CCL3 or CCL4 genes but their gene copy numbers are variable between individuals. There exist lineage-specific chemokine genes as well as genes ambiguous in the orthologous relationship even between human and mouse.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call