Abstract

Abstract Extensive and severe droughts have substantial effects on water supplies, agriculture, and aquatic ecosystems. To better understand these droughts, we used tree-ring-based reconstructions of the Palmer drought severity index (PDSI) for the period 1475–2017 to examine droughts that covered at least 33% of the conterminous United States (CONUS). We identified 37 spatially extensive drought events for the CONUS and examined their spatial and temporal patterns. The duration of the extensive drought events ranged from 3 to 12 yr and on average affected 43% of the CONUS. The recent (2000–08) drought in the southwestern CONUS, often referred to as the turn-of-the-century drought, is likely one of the longest droughts in the CONUS during the past 500 years. A principal components analysis of the PDSI data from 1475 through 2017 resulted in three principal components (PCs) that explain about 48% of the variability of PDSI and are helpful to understand the temporal and spatial variability of the 37 extensive droughts in the CONUS. Analyses of the relations between the three PCs and well-known climate indices, such as indices of El Niño–Southern Oscillation, indicate statistically significant correlations; however, the correlations do not appear to be large enough (all with an absolute value less than 0.45) to be useful for the development of drought prediction models. Significance Statement To better understand the variability of spatially extensive U.S. droughts through time and across space, we examined tree-ring-based reconstructions of a relative dryness/wetness index for the period 1475–2017. We identified 37 extensive drought events with durations that ranged from 3 to 12 years and that on average affected 43% of the conterminous United States. Also, three of the seven longest droughts occurred after 1900. Because associations between indices of climatic conditions and drought are weak, use of climatic indices for predictive models of drought seems tenuous.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call