Abstract
AbstractThe metalloprotease ADAMTS13 efficiently cleaves only the Tyr1605-Met1606 bond in the central A2 domain of multimeric von Willebrand factor (VWF), even though VWF constitutes only 0.02% of plasma proteins. This remarkable specificity depends in part on binding of the noncatalytic ADAMTS13 spacer domain to the C-terminal α-helix of VWF domain A2. By kinetic analysis of recombinant ADAMTS13 constructs, we show that the first thrombospondin-1, Cys-rich, and spacer domains of ADAMTS13 interact with segments of VWF domain A2 between Gln1624 and Arg1668, and together these exosite interactions increase the rate of substrate cleavage by at least approximately 300-fold. Internal deletion of Gln1624-Arg1641 minimally affected the rate of cleavage, indicating that ADAMTS13 does not require a specific distance between the scissile bond and auxiliary substrate binding sites. Smaller deletions of the P2-P9 or the P4′-P18′ residues on either side of the Tyr1605-Met1606 bond abolished cleavage, indicating that the metalloprotease domain interacts with additional residues flanking the cleavage site. Thus, specific recognition of VWF depends on cooperative, modular contacts between several ADAMTS13 domains and discrete segments of VWF domain A2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.