Abstract

Genetic variations in the plant pathogen, Spiroplasma citri strain BR3, were characterized through physical genome mapping of the original isolate, BR3-3X, and two derivatives, BR3-T and BR3-G, obtained after several years of different maintenance conditions. BR3-T was transmitted from plant to plant via its natural insect vector, the leafhopper Circulifer tenellus, while BR3-G was maintained only in plants by periodic grafting and has lost its ability to be insect transmitted. By pulsed field gel electrophoresis (PFGE) analysis and DNA hybridization, extensive changes in chromosomal DNA restriction patterns relative to the parent, BR3-3X, were observed in both BR3-T and BR3-G, each of which also had a larger genome size than the parent line. Genetic organization was relatively conserved between BR3-T and BR3-3X. In contrast, a large chromosomal inversion and deletions of approximately 10 kb near each of the inversion borders were observed in BR3-G. One of the deletions, which included several possibly functional genes, was closely linked to a SpV1-related transposase gene. The locations of the deletion borders were also determined. The results of this study demonstrated remarkable genome instability of spiroplasmas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.