Abstract
Scene background initialization is the process by which a method tries to recover the background image of a video without foreground objects in it. Having a clear understanding about which approach is more robust and/or more suited to a given scenario is of great interest to many end users or practitioners. The aim of this paper is to provide an extensive survey of scene background initialization methods as well as a novel benchmarking framework. The proposed framework involves several evaluation metrics and state-of-the-art methods, as well as the largest video data set ever made for this purpose. The data set consists of several camera-captured videos that: 1) span categories focused on various background initialization challenges; 2) are obtained with different cameras of different lengths, frame rates, spatial resolutions, lighting conditions, and levels of compression; and 3) contain indoor and outdoor scenes. The wide variety of our data set prevents our analysis from favoring a certain family of background initialization methods over others. Our evaluation framework allows us to quantitatively identify solved and unsolved issues related to scene background initialization. We also identify scenarios for which state-of-the-art methods systematically fail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.