Abstract

BackgroundThe diatom cell wall, called the frustule, is predominantly made out of silica, in many cases with highly ordered nano- and micro-scale features. Frustules are built intracellularly inside a special compartment, the silica deposition vesicle, or SDV. Molecules such as proteins (silaffins and silacidins) and long chain polyamines have been isolated from the silica and shown to be involved in the control of the silica polymerization. However, we are still unable to explain or reproduce in vitro the complexity of structures formed by diatoms.Methods/Principal FindingIn this study, using fluorescence microscopy, scanning electron microscopy, and atomic force microscopy, we were able to compare and correlate microtubules and microfilaments with silica structure formed in diversely structured diatom species. The high degree of correlation between silica structure and actin indicates that actin is a major element in the control of the silica morphogenesis at the meso and microscale. Microtubules appear to be involved in the spatial positioning on the mesoscale and strengthening of the SDV.Conclusions/SignificanceThese results reveal the importance of top down control over positioning of and within the SDV during diatom wall formation and open a new perspective for the study of the mechanism of frustule patterning as well as for the understanding of the control of membrane dynamics by the cytoskeleton.

Highlights

  • Diatoms are unicellular algae that make cell walls out of silica which is structured on the nano- to micro-scale in an enormous variety of shapes

  • Valve formation in another Coscinodiscus species, C. wailesii, was described in detail previously [30], and our observations suggest a similar process of formation in C. granii

  • Previous TEM examination of C. wailesii suggested that the nucleus was in contact with the forming valve [30]; our results suggest that in C. granii, the nucleus remains more closely associated with the epivalve (Fig. 2)

Read more

Summary

Introduction

Diatoms are unicellular algae that make cell walls out of silica which is structured on the nano- to micro-scale in an enormous variety of shapes. Diatoms range in overall size from two to several hundreds of microns, with detailed and intermediate features ranging from the nanometer to micron scale. Because of their ability to reproducibly form complex three dimensional structures with controlled features at multiple length scales, diatoms are an exceptional model for the study of silica biomineralization and the development of biomimetic approaches for nanoscale materials synthesis. The diatom cell wall, called the frustule, is predominantly made out of silica, in many cases with highly ordered nano- and micro-scale features. We are still unable to explain or reproduce in vitro the complexity of structures formed by diatoms

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.