Abstract

ABSTRACTIn this study, an improved fluid–structure interaction (FSI) analysis method is developed for a flapping wing. A co-rotational (CR) shell element is developed for its structural analysis. Further, a relevant non-linear dynamic formulation is developed based on the CR framework. Three-dimensional preconditioned Navier–Stokes equations are employed for its fluid analysis. An implicit coupling scheme is employed to combine the structural and fluid analyses. An explicit investigation of a 3D plunging wing is conducted using this FSI analysis method. A further investigation of this plunging wing is performed in relation to its operating condition. In addition, the relation between the wing’s aerodynamic performance and plunging motion is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.