Abstract
Given a smooth, projective variety Y over an algebraically closed field of characteristic zero, and a smooth, ample hyperplane section X ⊂ Y, we study the question of when a bundle E on X, extends to a bundle [Formula: see text] on a Zariski open set U ⊂ Y containing X. The main ingredients used are explicit descriptions of various obstruction classes in the deformation theory of bundles, together with Grothendieck–Lefschetz theory. As a consequence, we prove a Noether–Lefschetz theorem for higher rank bundles, which recovers and unifies the Noether–Lefschetz theorems of Joshi and Ravindra–Srinivas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.