Abstract
This article presents a natural extension of the tensor algebra. In addition to “left multiplications” by vectors, we can consider “derivations” by covectors as basic operators on this extended algebra. These two types of operators satisfy an analogue of the canonical commutation relations. This algebra and these operators have the following applications: (i) applications to invariant theory related to tensor products and (ii) applications to immanants. The latter includes a new method to study the quantum immanants in the universal enveloping algebras of the general linear Lie algebras and their Capelli type identities (the higher Capelli identities).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.