Abstract
The probability hypothesis density (PHD) filter is a promising algorithm for multitarget tracking, which can be extended for jump Markov systems (JMS). Since the existing multiple model sequential Monte Carlo PHD (MM SMC-PHD) filter is not interacting, two extensions of the SMC-PHD filters are developed in this paper. The interacting multiple-model (IMM) SMC-PHD filter approximates the model conditional PHD of target states by particles, and performs the interaction by resampling without any a priori assumption of the noise. The IMM Rao-Blackwellized particle (RBP) PHD filter uses the idea of Rao-Blackwellized to further enhance the performance of target state estimation for JMS with mixed linear/nonlinear state space models. The simulation results show that the proposed algorithms have better performances than the existing MM SMC-PHD filter in terms of state filtering and target number estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.