Abstract

AbstractIn this chapter, we shall extend the approximation methods for polynomial optimization discussed in Chap. 2. The extensions are focused on the constraint sets of the polynomial optimization models, including binary hypercube, hypercube, the Euclidean sphere, intersection of co-centered ellipsoids, a general convex compact set, and even a mixture of binary hypercube and the Euclidean sphere. These extensions are not straightforward generalizations of the approximation methods proposed before. Rather, they entail specifications to account for the different structures of the constraint sets at hand. The most noticeable novelty is in the decomposition routines, which play an instrumental role in designing approximation algorithms for multilinear form optimization models, as Sect. 2.1 already shows. Along with the approximation methods discussed in Chap. 2, we hope these extended techniques will be helpful in designing approximation methods when new models are encountered.KeywordsApproximation AlgorithmApproximation RatioPolynomial OptimizationEuclidean SphereMultilinear FormThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.