Abstract
We derive an implementable algorithm for solving nonlinear stochastic optimization problems with failure probability constraints using sample average approximations. The paper extends prior results dealing with a failure probability expressed by a single measure to the case of failure probability expressed in terms of multiple performance measures. We also present a new formula for the failure probability gradient. A numerical example addressing the optimal design of a reinforced concrete highway bridge illustrates the algorithm.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.