Abstract
We consider the semidirect product [Formula: see text] of the additive group [Formula: see text] of all integers and the multiplicative semigroup [Formula: see text] of integers without zero relative to a semigroup homomorphism [Formula: see text] from [Formula: see text] to the endomorphism semigroup of [Formula: see text]. It is shown that this semidirect product is a normal extension of the semigroup [Formula: see text] by the dihedral group, where [Formula: see text] is the multiplicative semigroup of all natural numbers. Further, we study the structure of [Formula: see text]-algebras associated with this extension. In particular, we prove that the reduced semigroup [Formula: see text]-algebra of the semigroup [Formula: see text] is topologically graded over the dihedral group. As a consequence, there exists a structure of a free Banach module over the reduced semigroup [Formula: see text]-algebra of [Formula: see text] in the underlying Banach space of the reduced semigroup [Formula: see text]-algebra of [Formula: see text].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.