Abstract

We study the relation between the cohomology of general linear and symmetric groups and their respective quantizations, using Schur algebras and standard homological techniques to build appropriate spectral sequences. As our methods fit inside a much more general context within the theory of finite-dimensional algebras, we develop our results first in that general setting, and then specialize to the above situations. From this we obtain new proofs of several known results in modular representation theory of symmetric groups. Moreover, we reduce certain questions about computing extensions for symmetric groups and Hecke algebras to questions about extensions for general linear groups and their quantizations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.